世界著名数学家系列之----牛顿

颗粒高中数学 2018-09-22 16:05:48

如果说高斯是数学天才的话,那么牛顿就是理科全才!

164314日,艾萨克·牛顿出生于英格兰林肯郡乡下的一个小村落伍尔索普村的伍牛顿老家伍尔索普庄园尔索普(Woolsthorpe)庄园。在牛顿出生之时,英格兰并没有采用教皇的最新历法,因此他的生日被记载为1642年的圣诞节。牛顿出生前三个月,他同样名为艾萨克的父亲才刚去世。由于早产的缘故,新生的牛顿十分瘦小;据传闻,他的母亲汉娜·艾斯库Hannah Ayscough)曾说过,牛顿刚出生时小得可以把他装进一夸脱马克杯中。当牛顿3岁时,他的母亲改嫁并住进了新丈夫巴纳巴斯·史密斯Barnabus Smith)牧师的家,而把牛顿托付给了他的外祖母玛杰里·艾斯库(Margery Ayscough)。年幼的牛顿不喜欢他的继父,并因母亲改嫁的事而对母亲持有一些敌意,牛顿甚至曾经写下:威胁我的继父与生母,要把他们连同房子一齐烧掉。[1]

1648年,牛顿被送去读书。少年时的牛顿并不是神童,他成绩一般,但他喜欢读书,喜欢看一些介绍各种简单机械模型制作方法的读物,并从中受到启发,自己动手制作些奇奇怪怪的小玩意,如风车、木钟、折叠式提灯等等。

折叠学生时代

1654年,牛顿进了离家有十几公里九龙的金格斯皇家中学读书。牛顿的母亲原希望他成为一个农民,但牛顿本人却无意于此,而酷爱读书。随着年岁的增大,牛顿越发爱好读书,喜欢沉思,做科学小实验。他在金格斯皇家中学读书时,曾经寄宿在一位药剂师家里,使他受到了化学试验的熏陶。

牛顿在中学时代学习成绩很出众,爱好读书,对自然现象有好奇心,例如颜色、日影四季的移动,尤其是几何学、哥白尼的日心说等等。他还分门别类的记读书笔记,又喜欢别出心裁地做些小工具、小技巧、小发明、小试验。

当时英国社会渗透基督教新思想,牛顿家里有两位都以神父为职业的亲戚,这可能是牛顿晚年的宗教生活所受的影响。仅从这些平凡的环境和活动中,还看不出幼年的牛顿是个才能出众异于常人的儿童。

后来迫于生活困难,母亲让牛顿停学在家务农,赡养家庭。但牛顿一有机会便埋首书卷,以至经常忘了干活。每次,母亲叫他同佣人一道上市场,熟悉做交易的生意经时,他便恳求佣人一个人上街,自己则躲在树丛后看书。有一次,牛顿的舅父起了疑心,就跟踪牛顿上市镇去,发现他的外甥牛顿伸着腿,躺在草地上,正在聚精会神地钻研一个数学问题。牛顿的好学精神感动了舅父,于是舅父劝服了母亲让牛顿复学,并鼓励牛顿上大学读书。牛顿又重新回到了学校,如饥似渴地汲取着书本上的营养。

据《大数学家》(Men of MathematicsE·T·贝尔(E.T. Bell)着)和《数学史介绍》(An introduction to the history ofmathematics伊夫斯H. Eves)着)两书记载:牛顿在乡村学校开始学校教育的生活,后来被送到了格兰瑟姆的国王中学,并成为了该校最出色的学生。在国王中学时,他寄宿在当地的药剂师威廉·克拉克William Clarke)家中,并在19岁前往剑桥大学求学前,与药剂师的继女安妮·斯托勒(Anne Storer)订婚。之后因为牛顿专注于他的研究而使得爱情冷却,斯托勒小姐嫁给了别人。据说牛顿对这次的恋情保有一段美好的回忆,但此后便再也没有其他的罗曼史,牛顿也终生未娶。

不过据和牛顿同时代的友人威廉·斯蒂克利(William Stukeley)所著的《艾萨克·牛顿爵士生平回忆录》(Memoirs of Sir Isaac Newton's Life)一书的描述,斯蒂克利在牛顿死后曾访问过文森特Vincent)夫人,也就是当年牛顿的恋人斯托勒小姐。文森特夫人的名字叫作凯瑟琳,而不是安妮,安妮是她的妹妹(参见Arthur Storer),而且夫人仅表示牛顿当年寄宿时对她只不过是怀有情愫的程度而已。

牛顿的晚年画像-171212 岁左右到17岁,牛顿都在金格斯皇家中学学习,在该校图书馆的窗台上还可以看见他当年的签名。他曾从学校退学,并在165910月回到埃尔斯索普村,因为他再度守寡的母亲想让牛顿当一名农夫。牛顿虽然顺从了母亲的意思,但据牛顿的同侪后来的叙述,耕作工作让牛顿相当不快乐。所幸金格斯皇家中学的校长亨利·斯托克斯(Henry Stokes)说服了牛顿的母亲,牛顿又被送回了学校以完成他的学业。他在18岁时完成了中学的学业,并得到了一份完美的毕业报告。

166163日,他进入了剑桥大学三一学院。在那时,该学院的教学基于亚里士多德的学说,但牛顿更喜欢阅读一些笛卡尔等现代哲学家以及伽利略、哥白尼和开普勒等天文学家更先进的思想。1665年,他发现了广义二项式定理,并开始发展一套新的数学理论,也就是后来为世人所熟知的微积分学。在1665年,牛顿获得了学位,而大学为了预防伦敦大瘟疫而关闭了。在此后两年里,牛顿在家中继续研究微积分学、光学和万有引力定律。

折叠政治生涯

1669年,被授予卢卡斯数学教授席位[2]

1689年,他当选为国会议员。牛顿在1689年到1690年和1701年是皇家科学院的成员,在1703年成为皇家学会会长,并任职24年之久,在历任会长中仅次于约瑟夫·班克斯,同时也是法国科学院的会员。

1696年,牛顿通过了当时的财政大臣查尔斯·孟塔古的提携迁到了伦敦作皇家铸币厂的监管,一直到去世。他主持了英国最大的货币重铸工作,此职位一般都是闲职,但牛顿却非常认真的对待。身为皇家铸币厂的主管官员,牛顿估计大约有20%的硬币是伪造的。为那些恶名昭著的罪犯定罪是非常困难的;不过事实证明牛顿做得很好。牛顿为此当上了太平绅士

1705年,牛顿被安妮女王封为爵士[3]

牛顿在1670年代写了很多处理圣经的文字解释的宗教小册子。亨利·摩尔的宇宙信仰和拒绝笛卡儿二元论影响了牛顿的宗教观念。在他发给约翰·洛克的一个从未发表的手稿中,他争议了三位一体的存在性。

1727331日(格兰历),伟大的艾萨克·牛顿逝世,

牛顿一生在物理、哲学、天文、数学等方面都有很多的成就,下面我就来梳理他在数学方面的主要成就吧

大多数现代历史学家都相信,牛顿与莱布尼茨独立发展出了微积分学,并为之创造了各自独特的符号。根据牛顿周围的人所述,牛顿要比莱布尼茨早几年得出他的方法,但在1693年以前他几乎没有发表任何内容,并直至1704年他才给出了其完整的叙述。其间,莱布尼茨已在1684年发表了他的方法的完整叙述。此外,莱布尼茨的符号和微分法被欧洲大陆全面地采用,在大约1820年以后,英国也采用了该方法。莱布尼茨的笔记本记录了他的思想从初期到成熟的发展过程,而在牛顿已知的记录中只发现了他最终的结果。牛顿声称他一直不愿公布他的微积分学,是因为他怕被人们嘲笑。牛顿与瑞士数学家尼古拉·法蒂奥·丢勒(Nicolas Fatio de Duillier)的联系十分密切,后者一开始便被牛顿的引力定律所吸引。1691年,丢勒打算编写一个新版本的牛顿《自然哲学的数学原理》,但从未完成它。一些研究牛顿的传记作者认为他们之间的关系可能存在爱情的成分。不过,在1694年这两个人之间的关系冷却了下来。在那个时候,丢勒还与莱布尼茨交换了几封信件。

1699年初,皇家学会(牛顿也是其中的一员)的其他成员们指控莱布尼茨剽窃了牛顿的成果,争论在1711年全面爆发了。牛顿所在的英国皇家学会宣布,一项调查表明了牛顿才是真正的发现者,而莱布尼茨被斥为骗子。但在后来,发现该调查评论莱布尼茨的结语是由牛顿本人书写,因此该调查遭到了质疑。这导致了激烈的牛顿与莱布尼茨的微积分学论战,并破坏了牛顿与莱布尼茨的生活,直到后者在1716年逝世。这场争论在英国和欧洲大陆的数学家间划出了一道鸿沟,并可能阻碍了英国数学至少一个世纪的发展。

牛顿的一项被广泛认可的成就是广义二项式定理,它适用于任何幂。他发现了牛顿恒等式、牛顿法,分类了立方面曲线(两变量的三次多项式),为有限差理论作出了重大贡献,并首次使用了分式指数和坐标几何学得到丢番图方程的解。他用对数趋近了调和级数的部分和(这是欧拉求和公式的一个先驱),并首次有把握地使用幂级数和反转(revert)幂级数。他还发现了π的一个新公式。

他在1669年被授予卢卡斯数学教授席位。在那一天以前,剑桥或牛津的所有成员都是经过任命的圣公会牧师。不过,卢卡斯教授之职的条件要求其持有者不得活跃于教堂(大概是如此可让持有者把更多时间用于科学研究上)。牛顿认为应免除他担任神职工作的条件,这需要查理二世的许可,后者接受了牛顿的意见。这样避免了牛顿的宗教观点与圣公会信仰之间的冲突。

17世纪以来,原有的几何和代数已难以解决当时生产和自然科学所提出的许多新问题,例如:如何求出物体的瞬时速度与加速度?如何求曲线的切线及曲线长度(行星路程)、矢径扫过的面积、极大极小值(如近日点、远日点、最大射程等)、体积、重心、引力等等;尽管牛顿以前已有对数、解析几何、无穷级数等成就,但还不能圆满或普遍地解决这些问题。当时笛卡儿的《几何学》和沃利斯的《无穷算术》对牛顿的影响最大。牛顿将古希腊以来求解无穷小问题的种种特殊方法统一为两类算法:正流数术(微分)和反流数术(积分),反映在1669年的《运用无限多项方程》、1671年的《流数术与无穷级数》、1676年的《曲线求积术》三篇论文和《原理》一书中,以及被保存下来的166610月他写的在朋友们中间传阅的一篇手稿《论流数》中。所谓流量就是随时间而变化的自变量如xysu等,流数就是流量的改变速度即变化率,写作等。他说的差率”“变率就是微分。与此同时,他还在1676年首次公布了他发明的二项式展开定理。牛顿利用它还发现了其他无穷级数,并用来计算面积、积分、解方程等等。1684年莱布尼兹从对曲线的切线研究中引入了和拉长的S作为微积分符号,从此牛顿创立的微积分学在大陆各国迅速推广。

微积分的出现,成了数学发展中除几何与代数以外的另一重要分支——数学分析(牛顿称之为借助于无限多项方程的分析),并进一步进进发展为微分几何、微分方程、变分法等等,这些又反过来促进了理论物理学的发展。例如瑞士J.伯努利曾征求最速降落曲线的解答,这是变分法的最初始问题,半年内全欧数学家无人能解答。1697年,一天牛顿偶然听说此事,当天晚上一举解出,并匿名刊登在《哲学学报》上。伯努利惊异地说:从这锋利的爪中我认出了雄狮

微积分的创立是牛顿最卓越的数学成就。牛顿为解决运动问题,才创立这种和物理概念直接联系的数学理论的,牛顿称之为"流数术"。它所处理的一些具体问题,如切线问题、求积问题、瞬时速度问题以及函数的极大和极小值问题等,在牛顿前已经得到人们的研究了。但牛顿超越了前人,他站在了更高的角度,对以往分散的结论加以综合,将自古希腊以来求解无限小问题的各种技巧统一为两类普通的算法——微分和积分,并确立了这两类运算的互逆关系,从而完成了微积分发明中最关键的一步,为近代科学发展提供了最有效的工具,开辟了数学上的一个新纪元。

牛顿没有及时发表微积分的研究成果,他研究微积分可能比莱布尼茨早一些,但是莱布尼茨所采取的表达形式更加合理,而且关于微积分的著作出版时间也比牛顿早。

在牛顿和莱布尼茨之间,为争论谁是这门学科的创立者的时候,竟然引起了一场悍然大波,这种争吵在各自的学生、支持者和数学家中持续了相当长的一段时间,造成了欧洲大陆的数学家和英国数学家的长期对立。英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的流数术中停步不前,因而数学发展整整落后了一百年。

1707年,牛顿的代数讲义经整理后出版,定名为《普遍算术》。他主要讨论了代数基础及其(通过解方程)在解决各类问题中的应用。书中陈述了代数基本概念与基本运算,用大量实例说明了如何将各类问题化为代数方程,同时对方程的根及其性质进行了深入探讨,引出了方程论方面的丰硕成果,如:他得出了方程的根与其判别式之间的关系,指出可以利用方程系数确定方程根之幂的和数,即牛顿幂和公式

牛顿对解析几何与综合几何都有贡献。他在1736年出版的《解析几何》中引入了曲率中心,给出密切线圆(或称曲线圆)概念,提出曲率公式及计算曲线的曲率方法。并将自己的许多研究成果总结成专论《三次曲线枚举》,于1704年发表。此外,他的数学工作还涉及数值分析、概率论和初等数论等众多领域。

牛顿在前人工作的基础上,提出流数(fluxion)法,建立了二项式定理,并和G.W.莱布尼茨几乎同时创立了微积分学,得出了导数、积分的概念和运算法则,阐明了求导数和求积分是互逆的两种运算,为数学的发展开辟了一个新纪元。

二项式定理

在一六六五年,刚好二十二岁的牛顿发现了二项式定理,这对于微积分的充分发展是必不可少的一步。二项式定理在组合理论、开高次方、高阶等差数列求和,以及差分法中有广泛的应用。

二项式级数展开式是研究级数论、函数论、数学分析、方程理论的有力工具。在今天我们会发觉这个方推广形式法只适用于n是正整数,当n是正整数123....... ,级数终止在正好是n+1项。如果n不是正整数,级数就不会终止,这个方法就不适用了。但是我们要知道那时,莱布尼茨在一六九四年才引进函数这个词,在微积分早期阶段,研究超越函数时用它们的级来处理是所用方法中最有成效的。